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1 By particle we mean any dispersed-phase eleme

droplets and bubbles.
a b s t r a c t

In Lagrangian–Eulerian (LE) simulations of two-way coupled particle-laden flows, the dispersed phase is
represented either by real particles or by computational particles. In traditional LE (TLE) simulations, each
computational particle is assigned a constant statistical weight, which is defined as the expected number
of real particles represented by a computational particle. If the spatial distribution of particles becomes
highly non-uniform due to particle–fluid or particle–particle interactions, then TLE simulations fail to
yield numerically converged solutions due to high statistical error in regions with few particles. In this
work, a particle-laden lid-driven cavity flow is solved on progressively refined grids to demonstrate
the inability of TLE simulations to yield numerically converged estimates for the mean interphase
momentum transfer term. We propose an improved LE simulation (ILE) method that remedies the above
limitation of TLE simulations. In the ILE method, the statistical weights are evolved such that the same
physical problem is simulated, but the number density of computational particles is maintained near-
uniform throughout the simulation, resulting in statistical error that remains nearly constant with grid
refinement. The evolution of statistical weights is rigorously justified by deriving the consistency condi-
tions arising from the requirement that the resulting computational ensemble correspond to a statistical
description of the same physical problem with real particles. The same particle-laden lid-driven cavity
flow is solved on progressively refined grids to demonstrate the ability of ILE simulation to achieve
numerically converged estimates for the mean interphase momentum transfer term. The accuracy of
the ILE method is quantified using a test problem that admits an analytical solution for the mean inter-
phase momentum transfer term. In order to improve the accuracy of numerical estimates of the mean
interphase momentum transfer term, an improved estimator is proposed to replace the conventional esti-
mator. The improved estimator results in more accurate estimates that converge faster than those
obtained using the conventional estimator. The ILE simulation method along with the improved estima-
tor is recommended for accurate and numerically convergent LE simulations.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Lagrangian–Eulerian approach is widely used to simulate
dispersed two-phase flows. In this approach the carrier phase is
represented by continuous fields in an Eulerian frame of reference,
while the dispersed phase is represented by discrete particles1 in a
Lagrangian frame. In two-phase flows with non-negligible mass
loading, the mean interphase momentum transfer term cannot be
neglected, and two-way coupling effects must be accounted for.
The mean interphase momentum transfer term, which is the average
force exerted by the particles on the fluid, accounts for the presence
of the dispersed phase on the fluid phase. Generally speaking, in
ll rights reserved.

), chidu@ascomp.ch (C. Nar-

nt, including solid particles,
two-phase flows there can also be interphase mass and energy trans-
fer, but we consider the simplest case of isothermal particle-laden
flow where these are absent. This simple case is used to illustrate
the numerical convergence and accuracy of LE simulation methods,
but the conclusions are easily generalized to all two-phase flows.

In numerical implementations of the LE method, the numerical
estimate2 of the mean interphase momentum transfer term (or any
other mean quantity) at Eulerian grid nodes is obtained using a finite
number of particles, leading to statistical and bias errors (Garg et al.,
2007). Statistical error can be reduced either by increasing the num-
ber of particles, or by averaging over multiple independent realiza-
tions. Bias error is insensitive to the number of independent
realizations and becomes zero only in the limit of infinite particles
2 We use the term ‘estimate’ in the statistical sense, just as the sample mean
ð1=NÞ

PN
i¼1XðiÞ of a random variable X is an estimate of Xh i. The term estimate is used

to only denote the numerical approximation arising from a finite number of samples
without implying approximation in any other sense.
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Fig. 1. Snapshot of a one-way coupled lid-driven cavity flow simulation at non-
dimensional time tU=L equal to 10. Details are provided in Section 5. The important
flow parameters are Re ¼ UL=m ¼ 100; St ¼ sp=sF ¼ 0:8. The solid lines represent the
fluid phase stream function contours and black dots represent the dispersed-phase
particles.
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(also called the dense data limit). In addition to these errors, a finite
number of grid cells and a finite time step leads to the usual spatial
and temporal discretization errors that are encountered in numerical
simulations of single-phase flow. The scaling of each of these error
contributions—statistical, bias, and discretization error—with varia-
tion of numerical parameters determines the numerical convergence
characteristics of any LE numerical implementation. Although LE
simulations are frequently used to simulate multiphase flows, their
numerical convergence and accuracy properties have not been criti-
cally examined until recently (Abraham, 1997; Are et al., 2005; Garg
et al., 2007).

LE simulation methods such as point–particle DNS—and to a les-
ser extent, LES—are intended to be used as predictive simulation
tools. LE CFD simulations are used to benchmark other simulation
approaches, such as Eulerian–Eulerian (EE) two-fluid models (Mor-
eau et al., 2003; Fan et al., 2004; Fan and Fox, 2008). Therefore, estab-
lishing numerical convergence of LE simulations is crucial not only
for meaningful validation with experimental data, but also for a
proper comparison of the modeling error incurred by different
choices for sub-models of the interphase mass, momentum or en-
ergy transfer terms. A meaningful comparative assessment of sub-
models is possible only if the numerical error is negligible compared
to the modeling error. It is important to note that numerical conver-
gence is by itself not sufficient to establish the predictive capability
of any simulation method. Clearly, establishing numerical conver-
gence along with the accuracy of LE simulations are necessary before
point–particle DNS or LES can be used as predictive tools.

In traditional LE (TLE) simulations (Sundaram and Collins, 1996;
Squires and Eaton, 1990; Elghobashi and Truesdell, 1993; Boivin
et al., 1998), the dispersed phase is represented either by real par-
ticles or by computational particles. If a fixed number of real par-
ticles Np is used to represent the dispersed phase on a grid with
total number of grid cells M, then the statistical error in a grid-
based estimate of any mean field quantity increases with grid
refinement, resulting in a non-convergent LE simulation. This is be-
cause as the grid is refined, fewer and fewer particles are available
in each grid cell to form the grid-based mean field estimate. Note
that for fixed Np, the nominal number of particles per grid cell
Npc ¼ Np=M decreases as the grid is refined. Therefore the statisti-
cal error, which is inversely proportional to the square root of
number of particles per cell, increases. This increase in statistical
error eventually overwhelms the reduction in spatial discretization
error that is achieved by grid refinement. As a result, the total
numerical error increases with grid refinement leading to non-con-
verged TLE solutions.

If rather than using real particles, Nc computational particles
(with constant statistical weight), such that their total number
scales linearly with the number of grid cells (Nc ¼ NpcM), are used,
then the nominal number of particles per grid cell can be main-
tained constant in a grid-refinement study. For low Stokes number
flows where the particle distribution does not develop strong spa-
tial inhomogeneity, it is possible to obtain numerically converged
LE solutions using this approach. However, the spatial distribution
of particles can be quite non-uniform in particle-laden systems
with finite Stokes number. Fig. 1 shows the spatial distribution of
particles in lid-driven cavity flow simulation for a Stokes number
equal to 0.8. It can be seen that the particles have preferentially
concentrated in regions of the flow field with high rate of strain.
Therefore, for finite Stokes number, the computational particles
also preferentially concentrate just like the real particles. As a re-
sult, in regions with few computational particles, the mean field
estimates will once again suffer from high statistical error, result-
ing in non-uniform spatial distribution of statistical error. Based on
the above discussion, we identify two major limitations of the TLE
simulations: (i) increase in statistical error with grid refinement
and (ii) non-uniform spatial distribution of statistical error.
The non-convergence of TLE simulations motivates the present
work, which aims at developing a numerically convergent and
accurate LE simulation method that works robustly for spatially
non-uniform particle distributions that arise naturally from the
flow physics in time-evolving simulations. In order to overcome
the aforementioned limitations of TLE simulations, we propose
an improved LE (ILE) simulation technique that uses a computa-
tional particle number density control algorithm which is similar
to those used in various other particle-based simulations (Pope,
1985; Haworth and Tahry, 1991; Subramaniam and Haworth,
2000; Jaberi et al., 1999; Raman et al., 2005). The computational
particle number density control algorithm ensures a near-uniform
distribution of computational particles during the entire course of
simulation. However, as a result of ensuring near-uniform distribu-
tion of computational particles, the statistical weights now need to
be evolved in time in order to solve the same physical system. The
computational particle number density control procedure relies on
the principle of statistical equivalence between the TLE (equal and
non-evolving statistical weights) and ILE (unequal and time-evolv-
ing statistical weights) simulations. It is achieved by annihilating
(in case of excess) and cloning (in case of deficient) computational
particles in each cell, resulting in nominally equal number of com-
putational particles per cell at all times (Fox, 2003). Thus, the ILE
method ensures that the statistical error remains nearly spatially
uniform. Therefore, even in the worst case, with increasing grid
refinement the statistical error in ILE is guaranteed to remain con-
stant. Note that the total error will decrease with grid refinement
at a rate that depends on the order of the spatial discretization
scheme, and also on the order of the interpolation scheme used
to transfer data between fluid and particle fields. These properties
of the ILE method permit a numerically converged LE simulation. It
is worthwhile to note that with an efficient parallelization strategy
based on domain decomposition, the ILE simulations will be better
load-balanced than the TLE simulations.

In earlier work (Garg et al., 2007), we characterized the numer-
ical convergence properties of four interpolation schemes for mean
interphase momentum transfer term used in LE simulations in a
series of static test problems. The estimation of the mean inter-
phase momentum transfer involves the use of an interpolation
scheme in conjunction with an estimator formula. Since those sta-
tic test problems were designed such that the mean interphase
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momentum transfer term could be solved analytically, we were
also able to quantify the accuracy of the interpolation schemes.
We observe that accurate estimation of the mean interphase
momentum transfer term using certain interpolation schemes re-
quires very high numerical resolution: on the order of 100 particles
per Eulerian grid cell and 100 independent realizations. This obser-
vation motivates the development of more accurate estimators. In
this article we evaluate the numerical accuracy of two types of
estimators: the conventional estimator (Sundaram and Collins,
1996; Boivin et al., 1998; Narayanan et al., 2002; Patankar and
Joseph, 2001; Snider et al., 1998), and an improved estimator.
We show that the improved estimator results in more accurate
estimates of the mean interphase momentum transfer term than
the conventional estimator, and these estimates also converge at
a faster rate.

In order to test the numerical convergence and accuracy of the
ILE method we consider two problems. The first problem is the
particle-laden lid-driven cavity flow shown in Fig. 1, which is rep-
resentative of a practical two-phase flow system. We solve the par-
ticle-laden lid-driven cavity flow on progressively refined grids
using the ILE method. We demonstrate that ILE, unlike TLE, yields
numerically converged estimates for the mean interphase momen-
tum transfer term.

While numerical convergence of an LE simulation can be char-
acterized for the particle-laden lid-driven cavity problem, we can-
not quantify the accuracy of the LE solution because we do not
know the exact solution. Therefore, for testing accuracy we extend
the static particle test of Garg et al. (2007) to a time-evolving test
problem where the particles naturally assume a non-uniform spa-
tial distribution due to the flow physics. Our time-evolving test
problem mimics the conditions of real particle-laden flows, and
yet is simple enough to permit analytical solution for mean fields
like the number density and the interphase momentum transfer
term. In order to quantify the accuracy of both TLE and ILE simula-
tion methods, we then solve the test problem on progressively re-
fined grids. Since the mean interphase momentum transfer term is
analytically known for the test problem, the accuracy of both the
simulations can be easily quantified. We show that by using the
ILE simulation with the improved estimator it is possible to obtain
numerically converged LE simulations with demonstrable accuracy.

2. Governing equations

In the LE approach, the dispersed phase consisting of Np real
particles is represented in a Lagrangian frame at time t by
fXðiÞðtÞ;VðiÞðtÞ; i ¼ 1; . . . ;NpðtÞg, where XðiÞðtÞ denotes the ith parti-
cle’s position, and VðiÞðtÞ represents its velocity. For simplicity we
consider monodisperse particles here, although the conclusions
of this work hold for polydisperse cases as well. The position and
velocity of the physical particles evolve by

dXðiÞ

dt
¼ VðiÞ; ð1Þ

dVðiÞ

dt
¼

fðiÞp

mðiÞp

¼ AðiÞ; i ¼ 1; . . . ;NpðtÞ; ð2Þ

where fðiÞp and AðiÞ are, respectively, the instantaneous force and
acceleration experienced by the ith physical particle having mass
mðiÞp .

In order to compute the mean momentum transferred from the
particles to the fluid, a statistical description of the particle ensem-
ble is needed to average over all possible particle configurations
and velocities. At the single particle level, this statistical descrip-
tion is given by the one-particle distribution function f ðx;v; tÞ of
kinetic theory, also referred to as the droplet distribution function
(ddf) in the context of sprays (Williams, 1958). The density
f ðx;v; tÞ is related to the position and velocity of the physical par-
ticles by

f ðx;v; tÞ � f 0ðx;v; tÞh i ¼
XNpðtÞ

i¼1

f 0i ðx;v; tÞ
* +

¼
XNpðtÞ

i¼1

dXðiÞdVðiÞ

* +
; ð3Þ

where f 0 is the fine-grained density function, f 0i is the fine-grained
density function for the ith particle, dXðiÞ ¼ dðx� XðiÞðtÞÞ,
dVðiÞ ¼ dðv � VðiÞðtÞÞ, and the expectation is over all possible particle
configurations and velocities of the multiparticle system. The
unnormalized density f ðx;v; tÞ is not a probability density function
(Subramaniam, 2000) because it integrates to the expected total
number of particles hNpi.

The evolution of the particle system by Eqs. (1) and (2) implies
an evolution equation for f ðx;v; tÞ (Subramaniam, 2001), which is

@f
@t
þ @

@xk
½vkf � þ @

@vk
Akjx;v; th if½ � ¼ 0: ð4Þ

In the above equation Akjx;v; th i is the expected acceleration
conditional on the location ½x;v� in the position-velocity space,
which is defined as

Akjx;v; th i ¼ 1
f ðx;v; tÞ

XNpðtÞ

i¼1

AðiÞk f 0i ðx;v; tÞ
* +( )

; if f > 0; ð5Þ

and zero otherwise. The closure for this conditional acceleration
term is obtained by assuming an acceleration model that includes
all the relevant forces arising from particle–particle interactions
(e.g., collisional, electrostatic), and particle–fluid interactions (e.g.,
drag, Saffman lift, added mass, Basset history term). In this work
we choose a physical setup where only the drag force is needed
to model this term, and a general form that subsumes different drag
force correlations is

A�ðiÞðtÞ ¼ A Uf XðiÞðtÞ; t
� �

;VðiÞ;qf ; mf ;qp;Dp

� �
; ð6Þ

where Uf ðXðiÞðtÞ; tÞ is the fluid velocity at the particle location, qf

and mf are the fluid thermodynamic density and kinematic viscosity,
respectively, and qp and Dp are the particle density and diameter,
respectively. Even though only drag force is considered in this
study, the conclusions will hold equally well for all particle–fluid
interactions, with minor modifications to the above functional form
of A� in order to account for the changes necessitated by the addi-
tional physics.

The mean momentum conservation equation in the fluid phase
obtained by ensemble-averaging (Drew and Passman, 1998) is

qf af
@hUf i
@t
þ hUf i � $hUf i

 !
¼ $ � hsi � hFfpi þ $ � sRS; ð7Þ

where af is the average fluid volume fraction, sRS is the residual
stress resulting from ensemble averaging, and the angle brackets
represent phasic averages of the terms. The mean interphase
momentum transfer term, hFfpi, that appears in the fluid-phase
mean momentum conservation equation is obtained from
hfjx;v; ti, the conditional expectation of the force acting on the
physical particles, as follows:

hFfpiðx; tÞ ¼
Z

v½ �
hfjx;v; tif ðx;v; tÞdv; ð8Þ

where the integration is performed over v, the sample space vari-
able corresponding to the particle velocity V.

The dependence of the mean interphase momentum transfer on
configuration of the particles, and on the particle velocity distribu-
tion, is revealed by decomposing the density f ðx;v; tÞ as a product
of the particle number density, npðx; tÞ, and the particle conditional
velocity pdf, f c

Vðvjx; tÞ (Subramaniam, 2001):
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f ðx;v; tÞ ¼ npðx; tÞf c
Vðvjx; tÞ: ð9Þ

Spatial non-uniformity in the particle position distribution mani-
fests itself in the particle number density npðx; tÞ, which for non-
aggregating particles evolves by (Subramaniam, 2001)

@npðx; tÞ
@t

þ $ � Vðx; tÞh inpðx; tÞ
� �

¼ 0; ð10Þ

where Vðx; tÞh i is the mean particle velocity field. If there is no in-
flow and outflow, such as in the particle-laden lid-driven cavity
flow, then the evolution equation for expected total number of par-
ticles ( NpðtÞ

� �
¼
R

x npðx; tÞdx) becomes

@ NpðtÞ
� �
@t

¼ 0: ð11Þ

In fact, in this special case the total number of particles Np (not
just the mean Np

� �
) is always constant. From Eqs. (4) and (10), the

evolution equation for f c
Vðvjx; tÞ (Subramaniam, 2001) is

@f c
Vðvjx; tÞ
@t

þ @

@xk
vkf c

Vðvjx; tÞ
� 	

þ @

@vk
Akjx;v; th if c

Vðvjx; tÞ
� �

¼ f c
Vðvjx; tÞ @ ln npðx; tÞ

@xk
Vðx; tÞh i � vkf g þ f c

Vðvjx; tÞ

� @ Vkðx; tÞh i
@xk

: ð12Þ

As noted earlier, in LE simulations the physical system de-
scribed by Eqs. (1) and (2) can be simulated with Np real particles,
or with Nc computational particles. Both simulations constitute an
indirect solution of Eq. (4), or equivalently, of Eqs. (10) and (12). In
the latter case, the computational ensemble is statistically equiva-
lent to the physical system. However, even simulations with real
particles can be conveniently interpreted as a special case of statis-
tical equivalence between the computational ensemble and the
physical system. Statistical equivalence is ensured by enforcing
consistency at all times between

(i) the number density implied by the computational ensemble
and the number density corresponding to the physical sys-
tem, which evolves by Eq. (10), and

(ii) the particle velocity distribution implied by the computa-
tional ensemble and the particle velocity distribution corre-
sponding to the physical system, which evolves by Eq. (12).

Any changes to the computational ensemble, such as allowing
the statistical weights to evolve in time, must preserve this statis-
tical equivalence with the physical system. Therefore, we describe
the statistical equivalence between the computational ensemble
and the physical system in some detail in the following section.

3. Statistical description of dispersed phase: computational
particles

In this section, the number density and particle velocity distri-
bution implied by the ensemble of statistically weighted computa-
tional particles are established. The section is sub-divided based on
the type of statistical weights used: constant (TLE simulations) or
time-evolving (ILE simulation). The consistency requirements for
statistical equivalence are derived by equating the number density
and particle velocity distribution implied by the computational
ensemble to their counterparts in the physical system.

3.1. Traditional LE simulation (TLE): equally weighted particles

In LE simulations, the dispersed-phase consisting of Np real par-
ticles is indirectly represented by Nc computational particles.
These Nc computational particles are represented in a Lagrangian
frame at time t by fXðiÞc ðtÞ;V
ðiÞ
c ðtÞ;W

ðiÞ; i ¼ 1; . . . ;NcðtÞg, here
XðiÞc ðtÞ denotes the ith computational particle’s position, VðiÞc ðtÞ its
velocity, and W ðiÞ its statistical weight. The statistical weight is de-
fined as the average number of real particles represented by a com-
putational particle. The summation of statistical weights, over all
computational particles, equals the expected total number of real
particles

XNc ðtÞ

i¼1

W ðiÞ ¼ NpðtÞ
� �

: ð13Þ

The position and velocity of the computational particles evolve by

dXðiÞc

dt
¼ VðiÞc ð14Þ

dVðiÞc

dt
¼ AðiÞc ; i ¼ 1; . . . ;Nc ð15Þ

where AðiÞc is the instantaneous acceleration experienced by the ith
computational particle. Using a condensed notation dXðiÞc

¼
dðx� XðiÞc ðtÞÞ and dVðiÞc

¼ dðv � VðiÞc ðtÞÞ, it is convenient to define the
fine-grained density for the ith computational particle
h0iðx;v; tÞ ¼W ðiÞdXðiÞc

dVðiÞc
. The fine-grained density for the ensemble

of Nc computational particles is then written as h0ðx;v; tÞ ¼PNcðtÞ
i¼1 h0iðx;v; tÞ. Analogous to the density function f ðx;v; tÞ, which

was defined earlier for the real particles, a weighted density func-
tion hðx;v; tÞ for the computational particles is defined in terms of
h0 as

hðx;v; tÞ � h0ðx;v; tÞ
� �

¼
XNcðtÞ

i¼1

h0iðx;v; tÞ
* +

¼
XNcðtÞ

i¼1

W ðiÞdXðiÞc
dVðiÞc

* +
: ð16Þ

The validity of using computational particles in place of real
particles rests on the equivalence between h and f at all time. For
the present case, the statistical weight W ðiÞ ¼ Np

� �
=Nc is equal for

each computational particle, and does not evolve. As a result
h ¼ f at initial time, and if the acceleration models for real and
computational particles are identical (i.e., AðiÞc � A�ðiÞ), then this
equivalence holds between the two statistical descriptions (i.e.,
h ¼ f ) for all time.

3.2. Improved LE simulation (ILE): unequal and evolving weights

The improved LE simulation employs Nc computational parti-
cles that are also represented in a Lagrangian frame at time t by
fXðiÞc ðtÞ;V

ðiÞ
c ðtÞ;W

ðiÞðtÞ; i ¼ 1; . . . ;NcðtÞg. The principal difference
between ILE and TLE is that the statistical weight W ðiÞðtÞ is now a
function of time in ILE. The position and velocity of the computa-
tional particles evolve by Eqs. (14) and (15), respectively. The sta-
tistical weights evolve by

dW ðiÞðtÞ
dt

¼ �XðiÞðtÞW ðiÞðtÞ; i ¼ 1; . . . ;NcðtÞ; ð17Þ

where XðiÞ represents the fractional rate of change of statistical
weight.

The weighted density function hðx;v; tÞ ¼PNcðtÞ
i¼1 W ðiÞðtÞdXðiÞc

dVðiÞc

D E
, which is similar to the definition in Eq.

(16), except that here the statistical weights W ðiÞðtÞ are not con-
stant but evolve in time. Similar to the decomposition of f in Eq.
(9), h is decomposed as

hðx;v; tÞ ¼ enpðx; tÞehc
Vc
ðvjx; tÞ; ð18Þ

where ehc
Vc

is the conditional velocity pdf of computational particles
(the counterpart of f c

V) and enpðx; tÞ is the physical number density



3 There is nothing unique about this prescription, but it is the simplest approach to
preserve a minimum statistical equivalence, at the level of first moments of the
density functions f and h, following the splitting procedure. More sophisticated and
complex algorithms would be needed to ensure consistency at the second (or higher)
moments.
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implied by the present statistical description. The implied physical
number density enpðx; tÞ, which is obtained by integrating the den-
sity function h over velocity space, can be expressed as the product
of the computational particle number density ncðx; tÞ and the condi-
tional expectation of statistical weights Wjx; th i:

enpðx; tÞ ¼
Z
½v�

hdv ¼
XNcðtÞ

i¼1

W ðiÞðtÞd XðiÞc ðtÞ � x
� �* +

¼ ncðx; tÞ Wjx; th i; ð19Þ

where the conditional expectation of the statistical weights is de-
fined as

Wjx; th i ¼
W ðiÞðtÞd XðiÞc ðtÞ � x

� �D E
ncðx; tÞ

; if nc > 0; ð20Þ

and is equal to zero otherwise, and ncðx; tÞ ¼
PNcðtÞ

i¼1 d XðiÞc ðtÞ � x
� �D E

.

We seek to guarantee the equivalence between h and f at all
time by comparing evolution equations for h, and also the funda-
mental quantities (enp; NpðtÞ

� �
;hc

Vc
) with their counterparts in the

physical system. The evolution equation for h is

@h
@t
þ Xjx;v; th ih|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}þ @

@xk
vkh½ � þ @

@vk
Ac;kjx;v; t
� �

h
� �

¼ 0; ð21Þ

where Xjx;v; th i is the conditional expectation of fractional rate of
change of statistical weight, which is given by

Xjx;v; th i ¼ 1
hðx;v; tÞ

XNc

i¼1

XðiÞh0iðx;v; tÞ
n o* +

; if h > 0 ð22Þ

and equal to zero otherwise. The conditional expectation of the
acceleration term Ac;kjx;v; t

� �
is similarly defined.

The evolution equation for the number density enp, obtained by
integrating Eq. (21) over v space is

@enpðx; tÞ
@t

þ $ � Vcðx; tÞh ienpðx; tÞ
� �

¼ Xjx; th ienpðx; tÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}; ð23Þ

where the conditional expectation Xjx; th i is defined as

Xjx; th i ¼

PNc

i¼1
XðiÞW ðiÞðtÞdXðiÞc

� �
enpðx; tÞ

; if enp > 0 ð24Þ

and equal to zero otherwise. The evolution equation for the total
number of particles NpðtÞ

� �
, obtained by integrating Eq. (23) over

x space is

@ NpðtÞ
� �
@t

¼ � NpðtÞ
� �

XðtÞh i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}; ð25Þ

where XðtÞh i is the unconditional expectation of X, which is given
as

XðtÞh i ¼
PNc

i¼1X
ðiÞW ðiÞðtÞ

D E
NpðtÞ
� � : ð26Þ

From the evolution equations for h (Eq. (21)) and number den-
sity enp (Eq. (23)), the evolution equation for ehc

Vc
can be obtained as

@ehc
Vc
ðvjx; tÞ
@t

þ @

@xk
vk
ehc

Vc
ðvjx; tÞ

h i
þ @

@vk
Ac;kjx;v; t
� �ehc

Vc
ðvjx; tÞ

n o
¼ � Xjx;v; th iehc

Vc
ðvjx; tÞ þ Xjx; th iehc

Vc
ðvjx; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þehc

Vc
ðvjx; tÞ

�
@ Vc;kðx; tÞ
� �

@xk
þ ehc

Vc
ðvjx; tÞ @ ln enpðx; tÞ

@xk
Vcðx; tÞh i � vkf g: ð27Þ
3.2.1. Consistency requirements
In the above evolution equations (Eqs. (21), (23), (25), and (27))

for h; enp; NpðtÞ
� �

, and hc
Vc

, the underbraced quantities are the extra
terms that appear when compared with the corresponding evolution
equations (Eqs. (4), (10), (11), and (12)) for the real particles. Com-
paring the evolution equations for h in TLE, the computational parti-
cles have constant statistical weights, and the equivalence of the
computational ensemble with the statistical description based on
the real particles is trivially verified. For ILE with time-evolving
weights, the same equivalence is guaranteed only if the extra term
Xjx;v; th i that appears in the evolution equation for h (Eq. (21) as

compared to Eq. (4) for f) is zero. This automatically then guarantees
equivalence of the corresponding number density (enp � np) and
velocity PDF’s (ehc

Vc
� f c

V). In summary, the computational particles
and the real particles are statistically equivalent if the conditional
(Eqs. (22) and (24)), and unconditional (Eq. (26)) expectations of
fractional rate of change of statistical weight X are all zero. These
conditions on X are consistency requirements, i.e., a prescription
of XðiÞðtÞ in Eq. (17) that satisfies these conditions guarantees that
the evolution of computational particles by Eqs. (14), (15) and (17)
corresponds to the evolution of the physical system as given by Eq. (4).
A particle number density control algorithm that ensures a near-uni-
form spatial distribution of computational particles, and also satis-
fies all the consistency requirements, is described in the next section.
3.2.2. Computational particle number density control algorithm
To maintain nearly uniform computational particle number den-

sity, we use a variant of a commonly used approach in other particle-
based numerical methods, such as, PDF methods for turbulent flows
(Pope, 1985; Haworth and Tahry, 1991; Subramaniam and Haworth,
2000), direct simulation Monte Carlo methods (Kannenberg and
Boyd, 2000), large eddy simulations of turbulent flows using filtered
density function approach (Jaberi et al., 1999; Raman et al., 2005).
The numerical simulation begins with some initial computational
particles that are uniformly distributed in the flow domain. The same
statistical weight is assigned to all particles in a cell, with the spatial
distribution of statistical weights obeying Eq. (19) with ~np ¼ np, the
specified physical number density. In the ideal case, one would want
to maintain a constant number of particles (denoted by N T

pc) in each
cell throughout the course of simulation. We find that requiring con-
stant number of particles in each cell is a very stringent requirement,
but allowing the number of particles in each cell to lie within some
range centered around the ideal value of NT

pc is a better alternative.
In our simulations the minimum number of particles in each cell is
specified to be 0:5NT

pc, while the maximum number of particles al-
lowed in each cell is 2:0NT

pc. After evolving the position and the veloc-
ity of all particles by a time step, the number of computational
particles in each cell is computed. If this number lies outside the
interval ½0:5NT

pc;2:0NT
pc�, the following actions are taken:

1. Npc > 2:0NT
pc: In this case, the particle with the lowest statistical

weight is annihilated or deactivated, and its weight is equally
re-distributed among the remaining particles in the same cell.
This annihilation procedure continues until the number of par-
ticles in that cell reduces to the desired value of 2NT

pc.
2. Npc < 0:5NT

pc: In this case, the particle with the highest statisti-
cal weight is cloned or split into two equally weighted new par-
ticles that are randomly placed in the same cell. The new
particles retain the properties of the cloned particle3 such as,
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Fig. 2. Schematic of a 1-D grid with dispersed phase particles shown by black dots.
Solid and dashed vertical lines, indexed by m, show coarse and fine grids,
respectively. The angled intersecting lines on the top represent a typical top hat
kernel having bandwidth equal to h.
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velocity, temperature, etc. This cloning procedure continues until
the number of particles in that cell exceeds the minimum desired
value of 0:5NT

pc.

In the following we show that this number density control algo-
rithm satisfies the consistency requirements as described in Sec-
tion 3.2.1. Since the algorithm ensures that the sum of statistical
weights of all the computational particles is unchanged, it satisfies
the first consistency requirement, XðtÞh i ¼ 0. Since both the anni-
hilation and cloning procedures are performed at the cell level,
the second consistency requirement, Xjx; th i ¼ 0, is also satisfied.
Finally, since the number density control algorithm does not de-
pend on the velocities of the computational particles, the third
consistency requirement, Xjx;v; th i ¼ 0, that expectation of the
fractional rate of change of the statistical weights, conditional on
the physical and the velocity spaces, should be zero, is also satis-
fied. It is important to note that identical evolution equations, gi-
ven by Eqs. (14) and (15), for particle position and velocity are
solved in TLE and ILE. However, in ILE, the particle weights evolve
in time as described above. Essentially this corresponds to a spec-
ification of W ðiÞðtÞ that evolves according to Eq. (17), but we omit
the formal mathematical definition of XðiÞðtÞ in favor of the easily
understood algorithm.
4. Numerical estimation of mean interphase momentum
transfer term

The numerical estimate for the mean interphase momentum
transfer, fFfpðxÞg, at the mth grid node is obtained as

fFfp
mg ¼

1
Vm

XNcðtÞ

i¼1

fðiÞc W ðiÞKðXðiÞc ;x
mÞ; ð28Þ

where fðiÞc ¼ mpAðiÞc is the force acting on the ith computational par-
ticle, KðXðiÞc ; x

mÞ is a generic kernel with compact support that deter-
mines the influence of the particle force at XðiÞc on a grid node
located at xm, and Vm is the geometric volume of the mth grid cell.
In the convention followed, �f g represents the numerically esti-
mated mean field, while �h i represents the analytical mean field.
Four interpolation schemes for calculation of the mean interphase
momentum transfer term are considered in this work: fourth-order
Lagrange polynomial interpolation (LPI-4), second-order Lagrange
polynomial interpolation (LPI-2), piecewise cubic approximation
(PCA), and a two-stage estimation algorithm (TSE). The details of
the interpolation schemes are provided in Garg et al. (2007).

For a 1-D grid, shown in Fig. 2, the numerical estimate for
Ffp

x;m

n o
, from Eq. (28), at the mth grid node for an Oth-order inter-

polation scheme is

F fp
x;m

n oCE
¼ 1

Vm

XmþO=2�1

v¼m�O=2

XNv
c

k¼1

f k
x Wkbx

l ðn
k
l Þ; ð29Þ

where l ¼ m� v þ O=2; bx
l is the basis function at the elemental

coordinate nk
l ;N

v
c is the number of computational particles in the

vth cell, f k
x is the x component of the force fðkÞc acting on the kth par-

ticle, and the superscript ‘CE’ stands for conventional estimator. In
the above equation, the basis functions are numbered from left to
right. For example, if a particle is located in 5th cell (i.e. v ¼ 5), then
the fourth-order LPI-4 interpolation scheme will yield four non-zero
basis functions, b1 through b4, which correspond to grid nodes 4
through 7, respectively. The conventional estimator has been exten-
sively used in past LE simulations (Sundaram and Collins, 1996; Boi-
vin et al., 1998; Narayanan et al., 2002; Patankar and Joseph, 2001;
Snider et al., 1998).

Here we propose an improved estimator to compute the mean
interphase momentum transfer term as
Ffp
x;m

n oIE
¼ 1

Vm

PmþO=2�1
v¼m�O=2

PNv
c

k¼1/
k
xbx

l ðn
k
l ÞPmþO=2�1

v¼m�O=2

PNv
c

k¼1bx
l ðn

k
l Þ

; ð30Þ

where /k
x is a scaled force acting on the kth particle in cell v, and

superscript ‘IE’ stands for improved estimator. For the kth particle
belonging to the vth cell, /k

x is

/k
x ¼ f k

x

XNv
c

j¼1

Wj ¼ f k
x Nv

p ; ð31Þ

where Nv
p is the number of physical particles in the vth cell. On

substituting the above expression for /k
x into the expression for im-

proved estimator (Eq. (30)), we get

Ffp
x;m

n oIE
¼ 1

Vm

XmþO=2�1

v¼m�O=2

XNv
c

k¼1

f k
x WIk

bx
l ðn

k
l Þ; ð32Þ

where WIk
, the effective statistical weight associated with the kth

particle is

WIk ¼
PNv

c
j¼1WjPmþO=2�1

v¼m�O=2

PNv
c

k¼1bx
l ðn

k
l Þ
¼

Nv
p

Nc;m
� � : ð33Þ

In the above expression, Nc;m
� �

is the effective number of com-
putational particles at the mth grid node. Therefore, WIk

can be
interpreted as the locally averaged statistical weight. The expres-
sions for the conventional (Eq. (29)) and the improved estimators
(32) are very similar except for the difference in the weighting fac-
tor. Whereas in the conventional estimator, the weighting factor is
simply the statistical weight of the particle, in the improved esti-
mator, the weight factor is a locally averaged value given by Eq.
(33).

This improved estimator is similar to the first stage approxima-
tion in the TSE interpolation scheme used in earlier studies (Dree-
ben and Pope, 1992; Subramaniam and Haworth, 2000) and
extensively tested for accuracy in Garg et al. (2007). Therefore,
the TSE interpolation scheme is always implemented with the im-
proved estimator, while the other three interpolation schemes
(LPI-2, LPI-4, and PCA) can be implemented with either the conven-
tional or the improved estimator. Unless otherwise noted, the im-
proved estimator is used to obtain all the results that follow. It will
be shown later in a test problem that the improved estimator
yields more accurate and faster converging estimates than the con-
ventional estimator for the mean interphase momentum transfer
term.
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Fig. 3. Comparison of the convergence characteristics of the root mean square
relative error �F with grid spacing h for TLE1, TLE2, and ILE simulations of the lid-
driven cavity flow. Lines are a simple fit to the data points.
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5. Lid-driven cavity flow problem

We first solve the one-way coupled, lid-driven cavity flow prob-
lem using both the traditional and the improved LE simulation
methods. The carrier fluid momentum conservation equation (Eq.
(7)) is solved for primitive variables using the fractional
time– stepping procedure of Kim and Moin (1985). Fourth-order
accurate Runge–Kutta scheme is used to advance the particle’s po-
sition and velocity. Second-order accurate central-differencing
scheme is used for both the convection and the diffusion terms.
The LPI-4 interpolation scheme is used to interpolate the fluid
velocity field to the particle location, and the LPI-2 interpolation
scheme is used to form the estimates for the mean interphase
momentum transfer term.

The carrier flow Reynolds number Re ¼ Lref Uref=mf , based on the
cavity length Lref and lid velocity Uref , is equal to 100. The physical
system is a volumetrically dilute particle-laden flow with large
particle to fluid density ratio (qp � qf ). The solid particles are
monodisperse and small compared to the smallest flow length
scale, but large enough so Brownian motion of the particles can
be neglected. The Reynolds number for relative motion between
the particle and the fluid is Oð1Þ. Under these conditions, the inter-
phase momentum transfer is due to the drag and buoyancy forces.
If we neglect buoyancy and assume a linear drag model (which is
valid for Reynolds number Oð1Þ), the modeled particle acceleration
A�ðiÞ is given by

A�ðiÞ ¼
Uf XðiÞ; t
� �

� VðiÞ

sp
; ð34Þ

where sp ¼ qpD2
p=ð18lf Þ is the particle momentum response time.

The particle Stokes number St ¼ sp=sf , which is based on a flow
time scale sf ¼ Lref=Uref , is equal to 0.8. The volume fraction of the
dispersed phase ap is equal to 0.005, resulting in approximately
5300 real particles. The physical problem is solved on progressively
refined grids, ranging from the coarsest resolution of 50� 50 grid
cells to the finest resolution of 100� 100 grid cells.

For the TLE simulation, two different approaches are used. In
the first approach, referred to as TLE1, real particles (	 5300) are
used. In the second approach, referred to as TLE2, computational
particles with equal and non-evolving statistical weights are used.
In TLE2, for all the grid sizes a fixed number of computational par-
ticles per cell, Npcðt ¼ 0Þ ¼ 20, are uniformly seeded at the begin-
ning of the simulation.

For the ILE simulation, the computational particles are initially
seeded as in TLE2, i.e., Npcðt ¼ 0Þ ¼ 20. The target number of com-
putational particles in each cell NT

pc is set equal to 20. Therefore,
according to the particle number density control algorithm out-
lined earlier, the minimum and the maximum number of computa-
tional particles per cell are 10 and 40, respectively.

The global error in estimating the mean interphase momentum
transfer term is defined as root mean square of the relative error, or

�F ¼
1
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

fFfp
mg � Ffp

m

D E
Ffp

m

D E
0@ 1A2

vuuuut ; ð35Þ

where M ¼ MxMyMz is the total number of grid cells. In the absence
of an analytical solution for the mean interphase momentum trans-
fer term in the current problem, the ILE solution on a highly re-
solved 150� 150 grid is taken to be the reference solution for the
purpose of error calculation. The relative root mean square error
�F for each grid is calculated by substituting the interpolated value
of reference solution for Ffp

m

D E
in the above equation.

The particle-laden lid-driven cavity problem is simulated for 10
non-dimensional time units (t� ¼ t=sf ). Fig. 1 shows a snapshot of
the fluid stream function field (represented by contour lines) and
the dispersed-phase particles (represented by black dots) obtained
from the TLE1 simulation. Fig. 3 compares the convergence charac-
teristics of the root mean square relative error �F , with grid spacing
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
, for different simulations—TLE1, TLE2, ILE. Lines are a

simple fit to the data. It is observed that both the TLE simulations,
TLE1 and TLE2, fail to yield numerically converged estimates for
the mean interphase momentum transfer term. On the other hand,
the root mean square relative error for the ILE simulation shows a
monotonic decrease, indicating numerical convergence. Although
the lid-driven cavity flow results demonstrate the inability of the
TLE simulations to yield numerically converged solutions, it is
not possible to quantify the accuracy of different simulations in
the absence of an analytical solution for the mean interphase
momentum transfer term. To address the issue of accuracy, a sim-
ple test problem that admits an analytical solution for the mean
interphase momentum transfer term is proposed in the next
section.

6. Test problem

Here we propose a novel test problem that mimics the condi-
tions of real particle laden flows, and yet is simple enough to per-
mit analytical solution for mean fields like the number density and
the mean interphase momentum transfer term. The physical sys-
tem implied by the test problem admits the same assumptions
made for the lid-driven cavity flow, i.e., volumetrically dilute,
qp � qf , monodisperse particles, and Reynolds number for relative
motion between the particle and the fluid is Oð1Þ. Therefore, the
linear drag model given by Eq. (34) is valid here also.

As represented by the schematic in Fig. 4, a frozen two-dimen-
sional fluid velocity field

Uf
1ðx; yÞ ¼ U0; ð36Þ

Uf
2ðx; yÞ ¼ U0 1� y

Ly

� �
; ð37Þ

is chosen in a domain D ¼ ½0;Lx� � ½0;Ly�. For this fluid velocity
field, the flow time scale sf is defined to be equal to Ly=U0, and
the particle Stokes number is St ¼ sp=sf .

Particles are injected at x ¼ 0, with velocity V ¼ V1;V2ð Þ ¼
U0;0ð Þ. The particle position and velocity equations (Eqs. (14)

and (15)) can be reduced to two second-order ordinary differential
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equations by substituting the frozen fluid velocity field (Eqs. (36)
and (37)) into the particle acceleration model (Eq. (34)). These
ODE’s for the particle trajectory can be solved for any Stokes num-
ber. However, depending on the nature of the roots (real distinct or
complex conjugate) of the characteristic equation corresponding to
these ODEs, two different solutions are possible. Real and distinct
roots arise when St < 0:25 and complex conjugate roots arise when
Stokes number is greater than 0:25. Since preferential concentra-
tion is observed at St 
 1 and the resulting spatial distribution of
particles will be most demanding of LE simulation methods (cf.
Fig. 1 for lid-driven cavity simulation at St ¼ 0:8), we choose to
solve for the St > 0:25 case. For complex conjugate roots, the ana-
lytical expressions for the particle trajectory and velocity in y-
direction are

X2ðt;X2;0Þ ¼ e�t=2sp X2;0 �Ly
� 	

cos
ft

2sp

� �
þ 1

f
sin

ft
2sp

� �� �
þLy;

ð38Þ
and

V2ðt;X2;0Þ ¼
2U0 1� X2

Ly

h i
sin ft

2sp

� �
f cos ft

2sp

� �
þ 1

f sin ft
2sp

� �n o ; ð39Þ

where X2ðt;X2;0Þ and V2ðt;X2;0Þ denote the position and velocity at
time t, respectively, of the dispersed phase particle that is located
at X2;0 at time t ¼ 0. The parameter f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4St � 1
p

. Since the particle
moves with a constant velocity (i.e., V1ðt;X1;0Þ ¼ U0) in the x direc-
tion, its x coordinate at any time is given by X1ðt;X1;0Þ ¼ X1;0 þ U0t.

The Eulerian mean velocity field for particle phase is denoted
Upðx; tÞ, and it can be deduced from the Lagrangian solution
Vðt;X0Þ (Eq. (39)) by the transformation

UpðXðt;X0Þ; tÞ ¼ Vðt;X0Þ: ð40Þ

The particles are injected based on a specified inlet particle vol-
ume fraction field. Since we are interested in a non-uniform num-
ber density distribution, we choose a simple transcendental inflow
volume fraction of the form

apðx ¼ 0; yÞ ¼ ap;max þ ap;min

2
þ ap;max � ap;min

2
sin

2py
Ly

� �
; ð41Þ

where ap;min and ap;max ensure bounded volume fraction (0 < ap < 1)
for all values of y. Given the analytical expressions for the particle
trajectory (Eq. (38)), it is straightforward to write down the volume
fraction field at any later time. For our test problem, the steady dis-
persed-phase volume fraction field is

apðx;yÞ¼
apðx¼0;Y�1ðyÞÞex̂=gðx̂Þ : 0< x6Lx;

Ly 1�ex̂gðx̂Þ
� �

< y6Ly;

0 : otherwise;

8><>:
ð42Þ
Fig. 4. Schematic of the test problem. Solid line vectors represent Uf
1, dashed line
where Y�1ðyÞ is an inverse function obtained by re-expressing X2;0

in Eq. (38) in terms of X2, such that

Y�1ðyÞ � X2;0 ¼
y�Ly

gðx̂Þ ex̂ þLy; ð43Þ

where x̂ ¼ x=2spU0, and gðx̂Þ ¼ cos fx̂ð Þ þ f�1 sin fx̂ð Þ.
For monodisperse particles, the number density field corre-

sponding to this particle volume fraction field is npðx; yÞ ¼
apðx; yÞ=Vp, where Vp is the particle volume. Fig. 5 shows the con-
tour plot of the normalized analytical mean number density field
npðx; yÞ=npmax. From the contour plot, and from the above expres-
sion for volume fraction field (Eq. (42)), it is noted that in the re-
gion bounded by 0 < x 6Lx and 0 6 y 6 Ly 1� ex̂gðx̂Þ

� �
, the

number density is zero, i.e. no physical particles could be present
in this region. From hereon, this curve will be referred to as the
bounding streamline.

Similarly, the analytical expression for the mean interphase
momentum transfer term obtained from Eq. (8) is

hFfpiðxÞ ¼ mpnpðxÞ
sp

Uf xð Þ � UpðxÞ
h i

: ð44Þ

Fig. 5 shows the contour plot of the scaled analytical mean inter-
phase momentum transfer term in y-direction obtained after
substituting the fluid velocity field (Eqs. (36) and (37)), number
density field, and mean particle velocity field (Eq. (40)) into Eq.
(44). Since the particles are injected with V1 ¼ U0, they experience
zero drag in the x direction.

The objective of the test problem is to quantify the accuracy of ILE,
TLE1, and TLE2 simulations. Errors in LE simulations arise from: (1)
using a finite grid to represent and evolve the fluid velocity field,
(2) forward-interpolating the fluid velocity field represented at grid
nodes to particle location for calculating particle forces (cf. Eq. (34)),
(3) evolution of particle position and velocity using a finite time step,
and (4) estimation of mean fields, like the number density or the
mean interphase momentum transfer term, from a finite number
of particles. The first three sources of error are common to ILE,
TLE1, and TLE2. Since the principal difference between the simula-
tion methods is in step (4), the goal is to minimize or eliminate all
sources of error, except the backward estimation error (4). Since
the fluid velocity field is analytically specified, error (1) due to finite
grid size is zero. Specified fluid velocity field also eliminates error (2)
due to forward interpolation. A highly accurate, fourth-order Runge–
Kutta scheme is used to evolve the position and velocity of the par-
ticles in all the tests. Thus, the first two sources of error are totally
eliminated, and the third one is minimized.

6.1. Computation setup

The physical domain D is discretized using a structured grid
into Mx �My �Mz cells. In all our tests, the domain is a unit cube
vectors represent Uf
2. and particles, injected at x ¼ 0, are shown as black dots.
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with 29 6 Mx ¼ My 6 99, and Mz ¼ 3. Since the mean fields are
only a function of ðx; yÞ, more grid cells are used in the x–y plane.
The particle Stokes number is set to 0.8. The maximum inflow vol-
ume fraction (cf. Eq. (41)) ap;max ¼ 0:01, and the minimum inflow
volume fraction ap;min ¼ 0:001, which are typical values encoun-
tered in the LE simulations of dilute particle-laden flows.

As in the lid-driven cavity problem, two TLE simulation ap-
proaches are investigated. In TLE1 real particles are used. Particles
are injected at x ¼ 0 by defining an inlet volume Vin ¼ U0DtDyDz,
such that the number of real particles introduced at each time step
in cth cell that adjoins the boundary at x ¼ 0 is given by

Nin
p ðycÞ ¼

apðx ¼ 0; ycÞVin

Vp

& ’
; ð45Þ

where d�e is the nearest greater integer operator, and yc is the cell
center coordinate. The fractional loss in actual injected volume frac-
tion due to the greatest integer operation is saved and added to the
Nin

p computation in the next time step. These Nin
p ðycÞ particles are

uniformly distributed in the volume Vin.
In TLE2, computational particles with equal and non-evolving

statistical weights are used. The inflow of the real particles is indi-
rectly implemented by a uniform inflow of computational parti-
cles, and the weight distribution of the injected computational
particles mimics the inflow volume fraction. The number of com-
putational particles Nin

c in the cth cell is computed as

Nin
c ðycÞ ¼ dnin

c V
ine; ð46Þ

where d�e is the nearest greater integer operator, Vin is the inlet vol-
ume defined earlier, n in

c ¼ Nin
pc=Vm is the inflow number density of

the computational particles, and Nin
pc is the user specified parameter

that determines the numerical resolution of TLE2 simulation. The
statistical weight W ðiÞ for each injected computational particle is

W ðiÞ ¼
Nin

p

Nin
c

; i ¼ 1; . . . ;Nin
c : ð47Þ

For the ILE simulation, the computational particles are injected at
x ¼ 0 as in the TLE2 case. However, during the simulation, their
weights evolve as a result of the particle number density control
algorithm.

In order to meaningfully compare the accuracy of TLE2 and ILE
it is necessary to maintain the same numerical resolution in both
simulations. The number of computational particles per cell varies
throughout the domain in both TLE2 and ILE, as does the total
number of computational particles contained inside the region
bounded by the bounding streamline (Eq. (42)). Furthermore, be-
cause the number of computational particles in each cell is a ran-
dom variable (differs with each realization), it makes sense to
only ensure that the average (or other statistics, such as min/
max) number of computational particles per cell is the same in
TLE2 and ILE. However, it is difficult to maintain exactly the same
numerical resolution, even in terms of average number of compu-
tational particles in each cell, because of the nature of the simula-
tion methods. The parameter that controls the computational
particle distribution in TLE2 is Nin

pc, and for TLE, it is NT
pc. Through

trial and error, we have developed empirical rules that give
approximately the same average number of computational parti-
cles per cell inside the bounding streamline for TLE2 and ILE sim-
ulations as 24 and 28, respectively. Additionally, for the finest
grid used (100� 100� 3), the total number of computational par-
ticles inside the bounding streamline for TLE2 and ILE is equal to
690,000 and 747,282, respectively. These values are obtained with
Nin

pc ¼ 23 and NT
pc ¼ 20. In this way, a comparable numerical reso-

lution is maintained between TLE2 and ILE simulations.
7. Results

We have calculated the mean interphase momentum transfer
term using all the interpolation schemes (LPI-2, LPI-4, PCA, and
TSE). However, only one set of representative contour plots of
fFfpg and its relative error obtained using LPI-2 are reported here.
Fig. 6a, c, e show, respectively, the contour plots of fF fp

y g= Ffp
y

D E
max

from TLE1, TLE2, and ILE simulations on the coarsest grid
(30� 30� 3). For this grid resolution, all the three simulation
methods yield nearly identical estimates. However, the contour
plots for the finest grid (100� 100� 3) for TLE1 (Fig. 6(b)), TLE2
(Fig. 6(d)) and ILE (Fig. 6(f)) simulations, clearly show the worsen-
ing of estimates for the TLE1 although TLE2 and ILE do not give
very different estimates.

Fig. 7(a), (c) and (e) show, respectively, the contour plots of rel-

ative error
Ffp

yh i� Ffp
yf g

Ffp
yh i

���� ����� �
from TLE1, TLE2, and ILE simulations on

the coarsest grid. The relative error for the finest grid resolution
is shown in Fig. 7(b)(TLE1), Fig. 7(d) (TLE2), and 7(f) (ILE). For both
resolutions, TLE1 gives the maximum error, ILE gives the minimum
error, while errors incurred by TLE2 lie in the middle. The highest
error in TLE1 simulation is due to the fewer number of particles per
cell on progressively refined grids. The lower number of particles
per cell on finer grids results in increased statistical error. This er-
ror is highest in the regions of low number density. On the
30� 30� 3 grid (Fig. 7(a)) the relative error is nearly uniform over
the entire domain. However, on the 100� 100� 3 grid (Fig. 7(b)),
the relative error becomes more than 100%, with the highest error
observed in regions of low number density (0:5 < y <
1:0 and 0:0 < x < 1:0).



Fig. 6. (a, c, and e) Contour plots of the scaled mean interphase momentum transfer term fF fp
y g= Ffp

y

D E
max

obtained from TLE1, TLE2, and ILE simulations of the test problem on

a 30� 30� 3 grid. (b, d, and f) Contour plots of the scaled mean interphase momentum transfer term obtained from TLE1, TLE2, and ILE simulations on a 100� 100� 3 grid.
Interpolation scheme used is LPI-2 with improved estimator.
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It is interesting to note that for this test problem the TLE2 sim-
ulation, although less accurate than ILE simulation, provides rea-
sonable estimates for the mean interphase momentum transfer
term. This is because the fluid velocity field in the test problem
has zero vorticity, and hence the particles do not preferentially
concentrate. For this particular test problem, the computational
particles in the TLE2 simulation maintain an acceptable particle
number density even in the regions of low physical volume frac-
tion. Therefore, the test problem does not result in highly non-uni-
form spatial distribution of particles that was encountered earlier
in the lid-driven flow. As a result, the estimates from the TLE2 sim-
ulation do not worsen as drastically with grid refinement as in the
more realistic lid-driven cavity flow. The test results show that the
particle number density control algorithm yields highly accurate
results that capture the flow physics.

We now use the test problem to investigate effect of the estima-
tor on LPI-2, LPI-4, and PCA interpolation schemes. Fig. 8 compares
the convergence characteristics of root mean square relative error
for different interpolation schemes (LPI-2, LPI-4, and PCA) using
the conventional estimator. Fig. 9 shows the same convergence
characteristics but with estimates obtained from the improved
estimator. Since the TSE is always implemented with improved
estimator, its convergence characteristics are shown only for the
improved estimator case. In both the figures, lines are simple fit
to the data. For the TLE1 simulation method, the root mean square
relative errors for all the interpolation schemes show that neither
choice of estimator yields numerically converged results. Regard-
less of the choice of estimator in TLE1, the errors first decrease
and then increase with grid refinement. On the other hand, the
rms relative errors from TLE2 (dashed lines) and ILE (dashed dot
lines) simulations show a monotonic decrease for both estimators,
with ILE being the more accurate. From these observations, we
conclude that ILE along with the improved estimator will result
in numerically converged and accurate LE simulations.

The rate of convergence of the rms relative errors using the con-
ventional and the improved estimators is obtained by performing



Fig. 7. (a, c, and e) Contour plots of relative error
Ffp

yh i� Ffp
yf g

F fp
yh i

���� ����� �
obtained from TLE1, TLE2, and ILE simulations on a 30� 30� 3 grid. (b, d, and f) Contour plots of relative error

obtained from TLE1, TLE2, and ILE simulations on a 100� 100� 3 grid. The LPI-2 interpolation scheme is used with improved estimator.
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linear least-squares fit to the data in Figs. 8 and 9. The convergence
rates are summarized in Table 1 for all the interpolation schemes.
The convergence rate of the rms relative errors is not reported for
TLE1 because it shows no signs of convergence. From Table 1, it is
observed that the improved estimator consistently gives higher
rates of convergence for LPI-2, LPI-4, and PCA interpolation
schemes as compared to the conventional estimator. The first step
in the TSE algorithm is identical to the improved estimator (Dree-
ben and Pope, 1992; Subramaniam and Haworth, 2000; Garg et al.,
2007). Therefore, for TSE, the rate of convergence of the rms rela-
tive error is independent of the estimator used.
8. Discussion

Particle-based methods have been used extensively in many
fields other than two-phase flows. For example, in single-phase
turbulent reactive flows, the so called ‘‘hybrid particle/finite-vol-
ume PDF method” is nowadays commonly used. In this approach,
the flow is solved using a standard finite volume method. However,
in order to avoid the use of closures for chemical reaction terms, a
stochastic differential equation is used to solve for species evolu-
tion. The stochastic differential equations, solved using a Monte–
Carlo approach, result in finite number of stochastic particles that
are used for species transport. For constant density flows, these
stochastic particles are always uniformly distributed resulting in
spatially uniform distribution of statistical error. For variable den-
sity flows, however, the number density of the stochastic particles,
if not corrected, can become highly non-uniform. In order to avoid
spatially non-uniform distribution of statistical error, particle
number density control algorithms have often been employed in
the simulations of turbulent reactive flows (Pope, 1985; Haworth
and Tahry, 1991; Subramaniam and Haworth, 2000; Jaberi et al.,
1999; Raman et al., 2005). LE simulations using real particles (or
computational particles with constant statistical weight) also suf-
fer from spatially non-uniform distribution of statistical error as
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Fig. 8. Convergence characteristics of the root mean square relative error with grid
spacing h for TLE1 (solid), TLE2 (dash), and ILE (dash–dot) simulations of the test
problem. Conventional estimator is used. Lines are simple fit to the symbols. �, LPI-
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Fig. 9. Convergence characteristics of the root mean square relative error with grid
spacing h for TLE1 (solid), TLE2 (dash), and ILE (dash–dot) simulations of the test
problem. Improved estimator is used. Lines are simple fit to the symbols. �, LPI-4;
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Table 1
Comparison of relative root mean square error’s convergence rate between conven-
tional and improved estimator for all the estimation schemes in TLE2 and ILE
simulations.

Conventional estimator Improved estimator

TLE2 ILE TLE2 ILE

LPI-4 1.27 1.27 1.34 1.32
LPI-2 1.18 1.18 1.41 1.40
PCA 1.07 1.09 1.54 1.50
TSE — — 1.42 1.58

4 The discretization error for fixed bandwidth kernel (Dreeben and Pope, 1992)
scales as OðhpÞ, where p depends on the estimation scheme.
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the particle number density can go to zero in some regions of the
flow. Therefore, a particle number density control algorithm, like
the one used in turbulent reactive flows, becomes imperative in or-
der to ensure accurate LE simulations in multiphase flows. The test
cases considered in this study demonstrate the accuracy and con-
vergence of the particle number density control algorithm incorpo-
rated into the ILE method, but they are relatively simple in that the
regions of the flow devoid of particles do not change drastically in
time. While we do not anticipate any special difficulties with sim-
ulating such flows, they may be suitable test problems for future
study.

Although the particle number control algorithm ensures that
the statistical error is uniformly distributed over the entire flow
domain, the accuracy of numerically estimated mean interphase
momentum transfer term is only as good as the estimator used.
A simple modification to the conventionally used estimation pro-
cedure for mean interphase momentum transfer term gives more
accurate estimates along with a higher rate of convergence for all
simulation methods. Although the improved estimator gives a
big improvement over the conventional estimator, some caution
should be exercised in choosing the interpolation scheme when
using improved estimator. This is due to the difference in basis
function definitions for each scheme. Interpolation schemes like
LPI-2, and PCA have strictly positive basis function values, there-
fore, both the numerator and the denominator in Eq. (30) always
scale well, even in the limit of low number of particles per cell. Ba-
sis function for LPI-4, on the other hand, can become both positive
and negative. As a result, in the limit of low Npc, the denominator in
Eq. (30) may acquire a very small value that does not scale well
with the numerator, resulting in poor estimates. Therefore, the
use of LPI-4 is not recommended with the improved estimator.

TLE simulations suffer from increased statistical error with grid
refinement, resulting in their failure to yield numerically con-
verged estimates. The limitations of TLE simulations can be over-
come by ensuring that the statistical error remains constant on
progressively refined grids, and as well as is spatially uniformly
distributed. In typical LE simulations, including ours, estimates
for the mean interphase momentum transfer term are formed
using a kernel whose support or bandwidth scales with grid size.
These are generally referred to as the grid-cell based estimators
and, as observed in this study, they suffer from increased statistical
error with grid refinement. If estimation kernel’s bandwidth re-
mains constant, then the statistical error will also remain constant
with grid refinement. Such estimators are referred to as the fixed-
bandwidth or grid-free estimators. For example, if the bandwidth
of the top hat kernel in Fig. 2 is kept fixed at h, then at any spatial
location the number of samples used to form the mean field esti-
mates is approximately the same for both the coarse (solid vertical
lines) grid and the fine grid (dashed vertical lines). This ensures
constant statistical error on both coarse and fine grids. However,
even with fixed-bandwidth estimators, the statistical error can be
spatially non-uniform in flows with preferential concentration.
Also fixed-bandwidth estimators do not show improved accuracy
with grid refinement because the discretization error4 in the esti-
mate scales as a power of the bandwidth, independent of the grid-
size. Therefore, although fixed-bandwidth estimators are superior
to grid-cell based estimators and aid in overall stability of LE simu-
lations, they do not solve the problem of spatially non-uniform dis-
tribution of particles. In this context, our ILE simulation method
fulfills both the desired objectives: (a) near-constant statistical error
and decreasing discretization error with grid refinement, and (b)
spatially near-uniform distribution of statistical error.

9. Conclusions

In LE simulations of two-phase flows the spatial distribution of
particles can become highly non-uniform due to preferential con-
centration, if the Stokes number is in the appropriate range. Such
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situations are frequently encountered in two-phase flows. Simula-
tions of a particle-laden lid-driven cavity flow show that tradi-
tional LE simulations are not numerically convergent. An
improved LE simulation approach is developed that maintains
near-uniform computational particle number density, resulting in
a numerically convergent solution to the particle-laden lid-driven
cavity problem. In order to establish the accuracy of the ILE meth-
od, a novel two-phase flow test problem that admits an analytical
solution for the mean interphase momentum transfer term is de-
vised. This test reveals that the ILE method yields accurate solu-
tions also. Numerical tests reveal that an improved estimator
yields very accurate estimates compared to the conventional esti-
mator that is currently used in LE simulations. Therefore, the com-
bination of ILE with the improved estimator yields numerically
convergent and accurate results for two-phase flows.

Acknowledgments

S.S. and R.G. thank Djamel Lakehal at ASCOMP GmbH for mak-
ing the particle tracking code available.

References

Abraham, J., 1997. What is adequate resolution in the numerical computations of
transient jets? SAE Paper 970051.

Are, S., Hou, S., Schmidt, S.P., 2005. Second-order spatial accuracy in Lagrangian–
Eulerian spray calculations. Numer. Heat Transfer B 48, 25–44.

Boivin, M., Simonin, O., Squires, K.D., 1998. Direct numerical simulation of
turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375,
235–263.

Dreeben, T.D., Pope, S.B., 1992. Nonparametric estimation of mean fields with
application to particle methods for turbulent flows. Tech. Rep. FDA 92-13, Sibley
School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
14853.

Drew, D.A., Passman, S.L., 1998. Theory of Multicomponent Fluids. Applied
Mathematical Sciences. Springer, New York.

Elghobashi, S.E., Truesdell, G.C., 1993. On the two-way interaction between
homogeneous turbulence and dispersed solid particles I: turbulence
modification. Phys. Fluids A 5, 1790–1801.

Fan, R., Fox, R.O., 2008. Segregation in polydisperse fluidized beds: validation of a
multi-fluid model. Chem. Eng. Sci. 63 (1), 272–285. http://www.dx.doi.org/
10.1016/j.ces.2007.09.038.
Fan, R., Marchisio, D.L., Fox, R.O., 2004. Application of the direct quadrature method
of moments to polydisperse gas–solid fluidized beds. Powder Technol. 139, 7–
20.

Fox, R.O., 2003. Computational Models for Turbulent Reacting Flows. Cambridge
University Press.

Garg, R., Narayanan, C., Lakehal, D., Subramaniam, S., 2007. Accurate numerical
estimation of interphase momentum transfer in Lagrangian–Eulerian
simulations of dispersed two-phase flows, doi:10.1016/j.ijmultiphase-
flow.2007.06.002.

Haworth, D.C., Tahry, S.H.E., 1991. Probability density function approach for
multidimensional turbulent flow calculations in reciprocating engines. AIAA J.
29, 208–218.

Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B., 1999. Filtered mass density
function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech.
401, 85–121.

Kannenberg, K., Boyd, I., 2000. Strategies for efficient particle resolution in the direct
simulation Monte Carlo method. J. Comput. Phys. 157, 727–745.

Kim, J., Moin, P., 1985. Application of a fractional-step method to incompressible
Navier–Stokes equations. J. Comput. Phys. 59, 308–323.

Moreau, M., Fede, P., Simonin, O., Villedieu, P., 2003. Monte carlo simulation of
colliding particles suspended in gas–solid homogeneous turbulent shear flows,
vol. 2A, pp. 491–500.

Narayanan, C., Lakehal, D., Yadigaroglu, G., 2002. Linear stability analysis of
particle-laden mixing layers using particle tracking. Powder Technol. 125,
122–130.

Patankar, N.A., Joseph, D.D., 2001. Lagrangian numerical simulation of particulate
flows. Int. J. Multiphase Flow 27, 1685–1706.

Pope, S.B., 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust.
Sci. 11, 119–192.

Raman, V., Pitsch, H., Fox, R.O., 2005. Hybrid large-eddy simulation/Lagrangian
filtered-density-function approach for simulating turbulent combustion.
Combust. Flame 143, 56–78.

Snider, D.M., O’Rourke, P.J., Andrews, M.J., 1998. Sediment flow in inclined vessels
calculated using a multiphase particle-in-cell model for dense particulate flows.
Intl. J. Multiphase Flow 24, 1359–1382.

Squires, K.D., Eaton, J.K., 1990. Particle response and turbulence modification in
isotropic turbulence. Phys. Fluids A 2, 1191–1203.

Subramaniam, S., 2000. Statistical representation of a spray as a point process. Phys.
Fluids 12, 2413–2431.

Subramaniam, S., 2001. Statistical modeling of sprays using the droplet distribution
function. Phys. Fluids 13, 624–642.

Subramaniam, S., Haworth, D.C., 2000. A pdf method for turbulent mixing and
combustion on three-dimensional unstructured deforming meshes. J. Engine
Res. 1, 171–190.

Sundaram, S., Collins, L.R., 1996. Numerical considerations in simulating a turbulent
suspension of finite-volume particles. J. Comp. Phys. 124, 337–350.

Williams, F.A., 1958. Spray combustion and atomization. Phys. Fluids 1, 541–
545.

http://www.dx.doi.org/10.1016/j.ces.2007.09.038
http://www.dx.doi.org/10.1016/j.ces.2007.09.038
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.002
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.002

	A numerically convergent Lagrangian–Eulerian simulation method for dispersed two-phase flows
	Introduction
	Governing equations
	Statistical description of dispersed phase: computational particles
	Traditional LE simulation (TLE): equally weighted particles
	Improved LE simulation (ILE): unequal and evolving weights
	Consistency requirements
	Computational particle number density control algorithm


	Numerical estimation of mean interphase momentum transfer term
	Lid-driven cavity flow problem
	Test problem
	Computation setup

	Results
	Discussion
	Conclusions
	Acknowledgments
	References


